Efficacy of tenapanor to treat hyperphosphatemia in patients on hemodialysis

Background

- Tenapanor is a minimally absorbed, orally administered, small-molecule inhibitor of the sodium/hydrogen exchanger isoform 3 (NHE3)
- Tenapanor, administered twice daily as a small tablet, reduces absorption of gastrointestinal sodium¹ and phosphate.^{2,3}
- The precise mechanism of reducing absorption of gastrointestinal phosphate is under investigation. It is thought to involve reduction of paracellular phosphate transport, without direct binding to phosphate or any direct effect on sodiumdependent phosphate transport protein 2B (NaPi2b, also known as NPT2b).³
- In a phase 2b study in patients undergoing hemodialysis, treatment with tenapanor for 4 weeks resulted in statistically significant reductions in serum phosphate concentrations relative to placebo in a dose-dependent manner.⁴
- Here, we present the efficacy results of the first phase 3 study of tenapanor in patients with hyperphosphatemia undergoing hemodialysis.
- The safety and tolerability of tenapanor in this study are described in a separate poster (Block et al. Poster TH-PO1045).⁵

Methods

- This was a double-blind study with an 8-week randomized treatment period followed by a 4-week randomized placebo-controlled withdrawal period (ClinicalTrials.gov identifier: NCT02675998) (Figure 1).
- The study was conducted in accordance with the Declaration of Helsinki at 32 sites in the USA, with all patients providing written informed consent
- Adults (18–80 years of age) with chronic kidney disease stage 5D (hemodialysis) who were receiving at least three daily doses of phosphate-binder medication were eligible for inclusion.
- Following a 1–3-week washout of phosphate binders, patients who had serum phosphate concentrations of 6.0–10.0 mg/dL and an increase of at least 1.5 mg/dL from screening were randomized (1:1:1) to receive a single tablet of tenapanor 3 mg, 10 mg or 30 mg twice daily (b.i.d.) for 8 weeks.
 - In the 30 mg b.i.d. group, weekly stepwise down-titration (30 \rightarrow 20 \rightarrow 15 \rightarrow $10 \rightarrow 3 \text{ mg b.i.d.}$) was permitted during the first 4 weeks based on gastrointestinal tolerability (hereafter referred to as 'tenapanor 30 mg b.i.d. titration').
- At the end of the 8-week randomized treatment period, patients entered a 4-week withdrawal period, in which they were randomized to:
 - remain on their dose of tenapanor (data from all three dose groups during the withdrawal period were pooled, hence this group is hereafter referred to as the 'pooled' tenapanor group')
- receive placebo instead of tenapanor.
- The primary efficacy endpoint, based on the responder population, was the difference between the pooled tenapanor and placebo groups in the change in serum phosphate concentration from the end of the 8-week treatment period to the end of the 4-week withdrawal period.
 - The responder population was defined as patients achieving a decrease in serum phosphate concentration of at least 1.2 mg/dL during the randomized treatment period.

Figure 1. Study design.

^aPatients initially receiving tenapanor 30 mg b.i.d. were allowed to down-titrate weekly (stepwise $30 \rightarrow 20 \rightarrow 15 \rightarrow 10$ \rightarrow 3 mg b.i.d.) during the first 4 weeks of the randomized treatment period, based on gastrointestinal tolerability; ^bone patient did not receive any dose of study drug and was excluded from analyses; °primary endpoint was in the 'responder population' (defined as all patients with a reduction in serum phosphate concentration of at least 1.2 mg/dL during the randomized treatment period). b.i.d., twice daily.

Table 1. Patient demographics and bas Characteristic Te 3 r 55 Age, years Sex, n (%) Male Race, n (%) White Black or African American Other^a Ethnicity, n (%) Hispanic or Latino 32. Body mass index, kg/m²

12.3 Time since first hemodialysis, years 7.40 Serum phosphate, mg/dL

(post-washout)

Jnless otherwise indicated, data are mean ± standard deviation. Includes Asian, American Indian or Alaskan native, native Hawaiian or Pacific Islander and other. b.i.d., twice daily.

Results

Patient disposition

- re-randomized at the start of the 4-week withdrawal period (Figure 1).
- and hyperphosphatemia (18%).
- withdrawal periods.

Serum phosphate – responder population

- responder population.
- for the three dose groups (all p < 0.001 vs baseline; Figure 2a).

Table 2. Other endpoints (intent-to-treat population). 8-week randomized treatment period Endpoint

Proportion of patients achieving serum phosp Serum parathyroid hormone, pmol/L Baseline, mean \pm SD Change from baseline to end of treatment, Serum fibroblast growth factor 23, pg/mL Baseline, median (range) Change from baseline to end of treatment,

4-week randomized withdrawal period

Endpoint

Serum parathyroid hormone, pmol/L End of 8-week treatment period, mean \pm SI Change from end of 8-week randomized to

- Serum fibroblast growth factor 23, pg/mL
- End of 8-week treatment period, median (r Change from end of 8-week randomized tr

^an = 72; ^bn = 69; ^cLSM change and 95% CI are from an analysis of covariance model with treatment and pooled investigator site as factors and baseline concentration as a covariate; ^dLSM change and 95% CI are from an analysis of covariance model with treatment and pooled investigator site as factors and end of 8-week treatment period concentration as a covariate. *p = 0.02 vs baseline.

b.i.d., twice daily; CI, confidence interval; LSM, least-squares mean; SD, standard deviation

Geoffrey A Block,¹ David P Rosenbaum,² Paul Korner,² Andrew Yan,² Glenn M Chertow³

¹Denver Nephrology Research, Denver, CO, USA; ²Ardelyx, Inc., Fremont, CA, USA; ³Stanford University School of Medicine, Stanford, CA, USA

seline characteristics (safety population).				
Tenapanor 10 mg b.i.d. (n = 73)	Tenapanor 30 mg b.i.d. titration (n = 71)			
57.4 ± 10.8	54.2 ± 10.9			
34 (47)	48 (68)			
25 (34) 45 (62) 3 (4)	30 (42) 40 (56) 1 (1)			
8 (11)	18 (25)			
33.6 ± 8.5	33.4 ± 8.1			
13.1 ± 11.2	12.1 ± 12.1			
7.46 ± 1.69	7.62 ± 1.43			
	racteristics (sate Tenapanor 10 mg b.i.d. $(n = 73)$ 57.4 ± 10.8 34 (47) 25 (34) 45 (62) 3 (4) 8 (11) 33.6 ± 8.5 13.1 ± 11.2 7.46 ± 1.69			

• In total, 219 patients met the study entry criteria and were randomly assigned to treatment, 164 (75%) of whom completed the 8-week treatment period and were A total of 55 (25%) patients discontinued during the randomized treatment period; the principal reasons for discontinuation were adverse events (31%)

 Of the 164 patients entering the randomized withdrawal period, 152 (93%) completed it. • Patient demographics and baseline characteristics were generally well balanced across treatment groups for both the randomized treatment (Table 1) and randomized

 In total, 80 patients achieved a reduction in serum phosphate concentration of at least 1.2 mg/dL during the 8-week treatment period and were included in the

- Least-squares mean (LSM) reductions in serum phosphate concentration from baseline to week 8 in the responder population were in the range 2.48–2.61 mg/dL

Between the end of the 8-week randomized treatment period and the end of the 4-week randomized withdrawal period, there was an increase in serum phosphate concentration in both the pooled tenapanor and placebo groups (Figure 2b).

Figure 2. Change in serum phosphate concentration in the responder population from baseline to the end of the 8-week randomized treatment period (a) and from the end of the 8-week randomized treatment period to the end of the 4-week randomized withdrawal period (b).

Data are shown for the responder population, defined as all patients with a reduction in serum phosphate concentration of at least 1.2 mg/dL during the randomized treatment period; data are LSM change (95% confidence interval) in serum phosphate concentration and error bars show standard error, from an analysis of covariance with treatment and pooled investigator sites as factors and baseline (in a) or end of 8-week treatment period (in b) serum phosphate concentration as a covariate. *p < 0.001 vs baseline.

b.i.d., twice daily; LSM, least-squares mean.

- The LSM change (95% confidence interval [CI]) in serum phosphate concentration was 0.56 (0.14, 0.97) mg/dL in the pooled tenapanor group and 1.38 (0.93, 1.83) mg/dL in the placebo group.
- The difference in the LSM (primary efficacy endpoint) was -0.82 (-1.44, -0.21) mg/dL, which was statistically significant (p = 0.01).

Serum phosphate – intent-to-treat population

- Significant reductions in serum phosphate concentration from baseline to the end of the 8-week randomized treatment period of approximately 1.1 mg/dL were achieved in all three tenapanor dose groups (p < 0.001 vs baseline; Figure 3a).
- Approximately 30% of patients in each group achieved a serum phosphate goal (< 5.5 mg/dL) at the end of the 8-week treatment period (Table 2).
- At the end of the 4-week randomized withdrawal period, the LSM change (95% CI) in serum phosphate concentration from the end of the 8-week randomized treatment period was 0.07 (-0.25, 0.40) mg/dL in the pooled tenapanor group and 0.79 (0.46, 1.12) mg/dL in the placebo group (Figure 3b)

 - The difference in the LSM was -0.72 (-1.19, -0.25) mg/dL (p = 0.003).

	Tenapanor 3 mg b.i.d. (n = 74)	Tenapanor 10 mg b.i.d. (n = 73)	Tenapanor 30 mg b.i.d. titration $(n = 71)$
ohate goal at end of period (< 5.5 mg/dL), n (%)	24 (32)	23 (32)ª	20 (29) ^b
LSM (95% CI)°	427 ± 233 1 (-39 41)	391 ± 282 7 (-33, 47)	381 ± 203 25 (65, 16)
LSM (95% CI)°	3510 (46–71 584) –1203 (–2985, 579)	4675 (123–166 330) –771 (–2544, 1002)	7461 (623–61 745) –2168 (–3991, –345)*
		Placebo (n = 82)	Pooled tenapanor (n = 82)
D		394 ± 259	403 ± 260
eatment period to end of 4-week randomized withdraw	/al period, LSM (95% CI) ^d	24 (-9, 56)	4 (-29, 36)
ange) eatment period to end of 4-week randomized withdraw	al period, LSM (95% CI)₫	3073 (64–46 713) 2429 (845, 4013)	4151 (52–39 469) 892 (–682, 2467)

Figure 3. Change in serum phosphate concentration in the intent-to-treat population from baseline to the end of the 8-week randomized treatment period (a) and from the end of the 8-week randomized treatment period to the end of the 4-week randomized withdrawal period (b).

Data are LSM change (95% confidence interval) in serum phosphate concentration and error bars show standard error, from an analysis of covariance with treatment and pooled investigator sites as factors and baseline (in a) or end of 8-week treatment period (in b) serum phosphate concentration as covariates. *p < 0.001 vs baseline. b.i.d., twice daily; LSM, least-squares mean

Other endpoints – intent-to-treat population

- Serum parathyroid hormone concentrations were broadly similar across groups and no significant changes were noted in either of the two treatment periods (Table 2). • There was some variability in median serum fibroblast growth factor 23 (FGF23) concentrations at baseline (Table 2).
- A significant reduction from baseline to the end of the 8-week treatment period (p = 0.02) was observed in the tenapanor 30 mg b.i.d. titration group.
- At the end of the 4-week randomized withdrawal period, there was no significant difference in the mean change in FGF23 concentration between the pooled tenapanor and placebo groups.

Conclusions

- In this phase 3 randomized trial of tenapanor treatment in patients with hyperphosphatemia undergoing hemodialysis, there was a statistically significant difference between tenapanor and placebo in the change in serum phosphate concentration over the 4-week randomized withdrawal period in the responder population, which was the primary efficacy endpoint.
- Tenapanor provided statistically significant reductions from baseline in serum phosphate concentration over 8 weeks of treatment in all three dose groups. Tenapanor, with its novel mechanism of action involving reduction of
- paracellular phosphate transport without direct binding to phosphate, provides a potential new treatment option for reducing serum phosphate in patients with hyperphosphatemia undergoing hemodialysis.

References

- 1. Spencer AG et al. Sci Transl Med 2014;6:227-36. 2. Johansson S et al. Clin Exp Nephrol 2017;21:407–16.
- 3. Labonté ED et al. J Am Soc Nephrol 2015;26:1138–49.
- 4. Block GA et al. J Am Soc Nephrol 2017;28:1933-42.
- 5. Block GA et al. Accepted abstract at the American Society of Nephrology Kidney Week 2017, New Orleans, LA, 31 October–5 November 2017 (TH-PO1045).

Disclosures

Geoffrey A Block serves as a consultant to Ardelyx and he and his practice have received ownership interest in Ardelyx. David P Rosenbaum and Andrew Yan are employees of and have ownership interest in Ardelyx. Paul Korner is a former employee of and has ownership interest in Ardelyx. Glenn M Chertow is a consultant to and has received ownership interest in Ardelyx.

Funding

This study was funded by Ardelyx.

Acknowledgments

We thank all the patients and investigators involved in the study. Medical writing support was provided by Steven Inglis (PhD) from PharmaGenesis London, London, UK and was funded by Ardelyx.