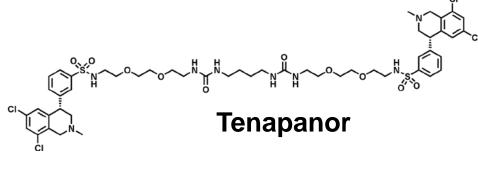
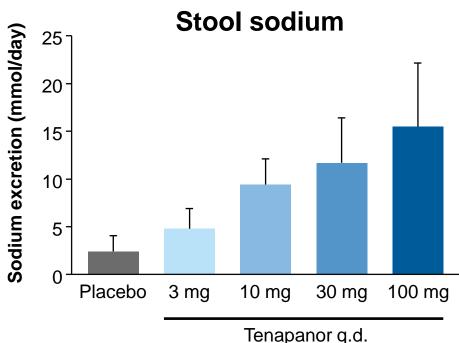
Tenapanor, a gastrointestinal NHE3 inhibitor, reduces serum phosphate in patients with chronic kidney disease stage 5D and hyperphosphatemia

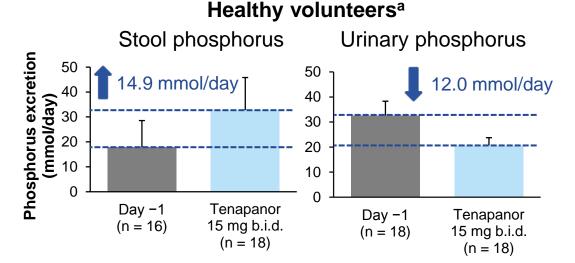
Geoffrey A Block,¹ David P Rosenbaum,² Maria Leonsson-Zachrisson,³ Magnus Åstrand,³ Susanne Johansson,³ Mikael Knutsson,³ Anna Maria Langkilde³

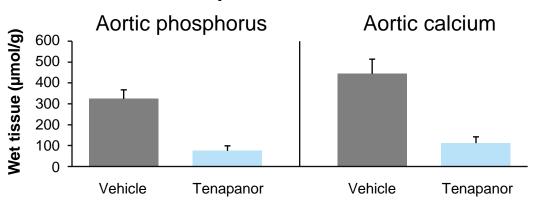

¹Denver Nephrology, Denver, CO, USA; ²Ardelyx Inc., Fremont, CA, USA; ³AstraZeneca Gothenburg, Mölndal, Sweden


Disclosures

- Geoffrey Block
 - Employment: Denver Nephrology
 - Consultancy agreements: Amgen, Ardelyx, AstraZeneca, Atara Biotherapeutics,
 Celgene, FMC Technologies, Keryx Biopharmaceuticals, Merck, Outset Medical,
 Shield Therapeutics
 - Ownership interest: Ardelyx, Atara Biotherapeutics, Nephroceuticals
 - Research funding: Amgen, Ardelyx, AstraZeneca, Keryx Biopharmaceuticals, La Jolla Pharmaceutical Company
 - Honoraria: Amgen, AstraZeneca, Celgene, Keryx Biopharmaceuticals, Merck, Mitsubishi, Outset Medical, Sanofi
 - Scientific advisor or membership: Amgen
 - Other: Medical Director with DaVita
- David Rosenbaum
 - Employment and ownership interest: Ardelyx
- Susanne Johansson
 - Employment and ownership interest: AstraZeneca
- Maria Leonsson-Zachrisson, Magnus Åstrand, Mikael Knutsson and Anna Maria Langkilde
 - Employment: AstraZeneca
- This study was funded by AstraZeneca

Tenapanor acts locally to reduce sodium absorption from the gut


- Tenapanor (RDX5791, AZD1722), a small molecule with minimal systemic availability, is a specific inhibitor of the sodium/hydrogen exchanger isoform 3 (NHE3)
- Intestinal NHE3 plays an important role in sodium/fluid homeostasis
- Studies in healthy volunteers show that tenapanor reduces absorption of dietary sodium over 7 days,^{1,2} with concomitant reductions in urinary sodium excretion²



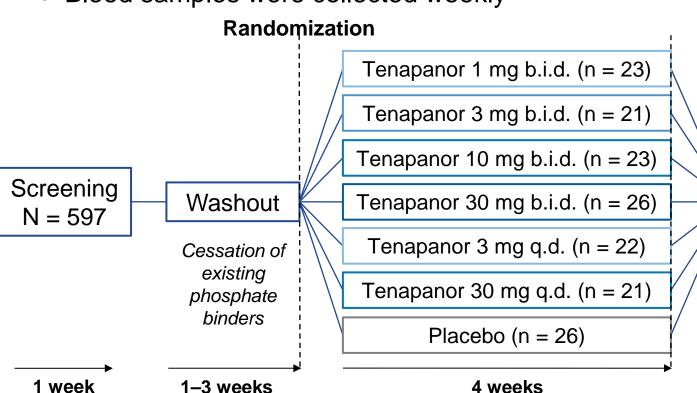
Tenapanor reduces phosphate absorption from the gut

- Phase 1 studies show that tenapanor increases stool phosphorus levels over 4 days, with concomitant reductions in urinary phosphorus levels¹
- Preclinical data show tenapanor reduces serum phosphorus levels and protects against vascular calcification²

5/6 nephrectomized rats^b

^aTenapanor formulation study (D5611C00002): includes mean of day −1, with data for tenapanor (15 mg b.i.d. HCl tablet) as mean + standard deviation of treatment days 1–4.

bRepublished with permission of American Society of Nephrology from Labonté ED *et al.*² with permission conveyed through Copyright Clearance Center, Inc.; data are presented as mean + standard error; ***p ≤ 0.001 (tenapanor vs vehicle). b.i.d., twice daily; HCl, hydrochloride.


^{1.} Rosenbaum DP et al. J Am Soc Nephrol 2014;25:72A (presentation FR-OR112); 2. Labonté ED et al. J Am Soc Nephrol 2015;26:1138–49.

A phase 2, double-blind, multicenter, dose-finding study on the effect of tenapanor on serum phosphate levels

Patients with CKD stage 5D who are undergoing hemodialysis and have hyperphosphatemia (baseline serum phosphate level 6.0–<10.0 mg/dL and ≥ 1.5 mg/dL increase from pre-washout levels; NCT02081534)

Week 4 endpoints

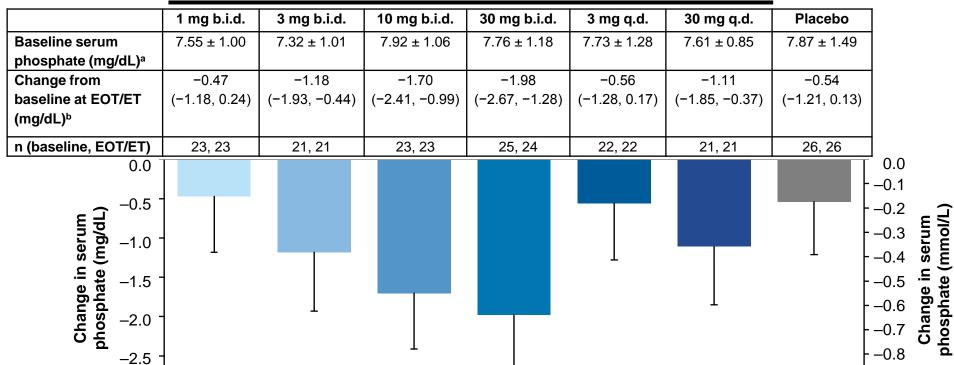
Blood samples were collected weekly

 Change in serum phosphate level (primary)

- Serum phosphate dose–response analysis
- Serum PTH levels
- Plasma FGF-23 levels (exploratory)

Follow-up

Resumption of pre-study phosphate binders


2 weeks

Patient demographics and baseline characteristics were balanced across groups

	Tenapanor								
	1 mg b.i.d. (n = 23)	3 mg b.i.d. (n = 21)	10 mg b.i.d. (n = 23)	30 mg b.i.d. (n = 26)	3 mg q.d. (n = 22)	30 mg q.d. (n = 21)	(n = 26)		
Age, years	57.9 ± 14.8	61.5 ± 11.2	62.7 ± 12.5	59.7 ± 13.0	57.6 ± 15.8	58.2 ± 15.8	56.1 ± 13.1		
Body weight, kg	85.9 ± 22.7	84.3 ± 19.2	84.8 ± 18.9	88.6 ± 24.6	76.6 ± 18.9	79.6 ± 18.8	83.3 ± 18.4		
Men, n (%)	16 (70)	15 (71)	15 (65)	17 (65)	12 (55)	13 (62)	16 (62)		
Race, n (%)									
White	17 (74)	12 (57)	16 (70)	15 (58)	13 (59)	16 (76)	17 (65)		
African- American	2 (9)	8 (38)	3 (13)	9 (35)	6 (27)	3 (14)	4 (15)		
Asian	1 (4)	0	3 (13)	1 (4)	1 (5)	0	3 (12)		
Patient disposition									
Completed study, n (%)	18 (78)	13 (62)	19 (83)	13 (50)	18 (82)	12 (57)	22 (85)		

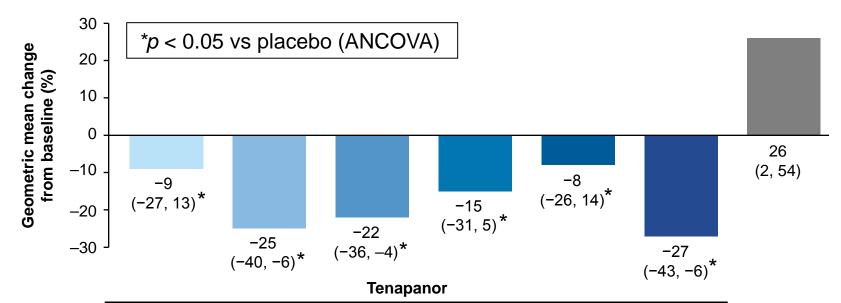
Tenapanor reduced serum phosphate levels from baseline at 4 weeks

*p < 0.05 vs placebo (ANCOVA)

A dose–response relationship was evident

-3.0

b.i.d. dosing showed improved efficacy over q.d. dosing


In the figure, data are shown at EOT/ET, and are shown as LS mean with error bars depicting the lower limit of 95% confidence intervals.
^amean ± standard deviation of last washout value; ^bLS mean (95% confidence interval).

ANCOVA, analysis of covariance; b.i.d., twice daily; ET, early termination; EOT, end of treatment; LS, least-squares; q.d., once daily.

-0.9

-1.0

Tenapanor reduced serum FGF-23 levels from baseline at 4 weeks

	1 mg b.i.d.	3 mg b.i.d.	10 mg b.i.d.	30 mg b.i.d.	3 mg q.d.	30 mg q.d.	Placebo
Median baseline serum	4154	2341	6448	6423	3116	4862	4848
FGF-23 level (pg/mL) ^a	(487–47 687)	(234–19 975)	(152–43 283)	(152–73 769)	(160–32 428)	(128–53 699)	(202–99 000)
n (baseline, EOT/ET)	21, 19	21, 19	22, 22	23, 21	22, 20	19, 15	24, 22

- Mean changes in serum parathyroid hormone levels from baseline did not differ significantly between treatment groups (ANCOVA: p = 0.305)
- No clinically significant changes in serum electrolytes
 - Serum calcium, potassium, sodium and bicarbonate

In the figure, data are shown at EOT/ET, and are shown as geometric LS mean (%) with numbers in brackets indicating the 95% confidence interval. aNumbers in brackets indicate the range.

ANCOVA, analysis of covariance; b.i.d., twice daily; ET, early termination; EOT, end of treatment; FGF-23, fibroblast growth factor 23; q.d., once daily.

Diarrhea was the most common treatmentrelated AE reported with tenapanor treatment

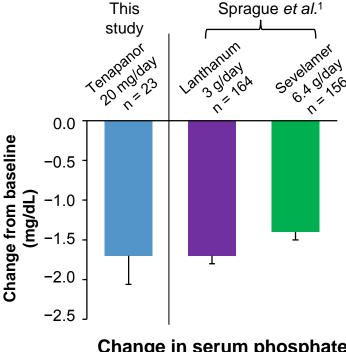
		Placebo					
	1 mg b.i.d. (n = 23)	3 mg b.i.d. (n = 21)	10 mg b.i.d. (n = 23)	30 mg b.i.d. (n = 25)	3 mg q.d. (n = 22)	30 mg q.d. (n = 21)	(n = 26)
Any AE	10 (43)	12 (57)	16 (70)	19 (76)	13 (59)	13 (62)	11 (42)
Deaths	1 (4) ^a	0	0	0	0	0	0
Serious AEs	2 (9) ^a	2 (10)	3 (13)	2 (8)	1 (5)	0	4 (15)
Treatment-related AEs ^b	7 (30)	7 (33)	12 (52)	16 (64)	6 (27)	10 (48)	6 (23)
Diarrhea ^c	6 (26)	6 (29)	12 (52)	16 (64)	4 (18)	10 (48)	2 (8)
Hyperphosphatemia	1 (4)	0	0	0	1 (5)	0	2 (8)
AEs leading to discontinuation of study drug ^d	3 (13)	3 (14)	3 (13)	9 (36)	1 (5)	7 (33)	2 (8)
Diarrhea ^c	2 (9)	3 (14)	3 (13)	8 (32)	0	6 (29)	0
Hyperphosphatemia	1 (4)	0	0	0	1 (5)	0	2 (8)

- Other than diarrhea, the incidence of investigator-judged treatment-related AEs was low and balanced between groups
 - No treatment-related AEs were considered serious
- One reported death was not judged treatment-related

Data are number of patients (%); unless otherwise stated, data are shown for any AE irrespective of relationship to study drug. alncludes 1 patient with fatal serious AE (cardiac failure); bas judged by investigator and shown for \geq 2 patients in any treatment group; cincluding fecal incontinence; data shown for \geq 2 patients who experienced an AE leading to discontinuation in any treatment group. AE, adverse event; b.i.d., twice daily; q.d., once daily.

Occurrence of AEs

	Tenapanor						Placebo
	1 mg b.i.d. (n = 23)	3 mg b.i.d. (n = 21)	10 mg b.i.d. (n = 23)	30 mg b.i.d. (n = 25)	3 mg q.d. (n = 22)	30 mg q.d. (n = 21)	(n = 26)
Blood and lymphatic system disorders	0	0	0	0	1 (5)	0	1 (4)
Ear and labyrinth disorders	0	3 (14)	0	0	0	0	0
Cardiac disorders	1 (4)	1 (5)	0	0	0	1 (5)	2 (8)
GI disorders	7 (30)	9 (43)	15 (65)	19 (76)	5 (23)	12 (57)	5 (19)
Diarrhea ^a	6 (26)	7 (33)	13 (57)	17 (68)	4 (18)	11 (52)	3 (12)
Nausea	0	1 (5)	1 (4)	1 (4)	2 (9)	1 (5)	1 (4)
Abdominal pain	0	0	0	2 (8)	1 (5)	0	1 (4)
Vomiting	0	1 (5)	0	0	1 (5)	2 (10)	0
General disorders and administration site conditions	2 (9)	0	0	2 (8)	2 (9)	0	0
Infections and infestations	0	1 (5)	1 (4)	0	2 (9)	1 (5)	3 (12)
Investigations	0	1 (5)	0	0	1 (5)	0	1 (4)
Injury, poisoning and procedural complications	2 (9)	2 (10)	1 (4)	2 (8)	1 (5)	0	0
Metabolism and nutrition disorders	1 (4)	1 (5)	2 (9)	1 (4)	1 (5)	1 (5)	2 (8)
Musculoskeletal and connective tissue disorders	0	1 (5)	0	2 (8)	0	2 (10)	2 (8)
Nervous system disorders	1 (4)	1 (5)	1 (4)	2 (8)	2 (9)	3 (14)	0
Psychiatric disorders	0	0	0	2 (8)	1 (5)	0	2 (8)
Respiratory, thoracic, and mediastinal disorders	0	1 (5)	0	0	1 (5)	0	1 (4)
Skin and subcutaneous tissue disorders	0	0	1 (4)	0	2 (9)	0	1 (4)
Vascular disorders	2 (9)	2 (10)	0	1 (4)	0	1 (5)	2 (8)


Data are number of patients (%); data shown for system organ class (and preferred terms for GI disorders) in which ≥ 2 patients experienced an AE across all treatment groups, irrespective of relationship of the AE to the study drug.

AE, adverse event; b.i.d., twice daily; GI, gastrointestinal; q.d., once daily.

alnoluding 3 patients reporting fecal incontinence (tenapanor 3 mg b.i.d. [n = 1]; tenapanor 10 mg b.i.d. [n = 2]).

Conclusions

- Tenapanor, a novel NHE3 inhibitor, taken twice daily, provided dose-dependent, clinically significant reductions in serum phosphate levels in patients with CKD stage 5D (hemodialysis) and hyperphosphatemia
 - Tenapanor showed comparable efficacy with phosphate binders¹
- Diarrhea was the most common adverse event
 - Expected due to its pharmacodynamic effect on stool sodium
 - The highest doses of tenapanor were associated with the highest rates of diarrhea
 - Rarely resulted in withdrawal from trial
- Tenapanor may offer a new treatment mechanism to reduce serum phosphate levels in patients with CKD, with the added benefit of reducing sodium/fluid absorption

Change in serum phosphate level after 4 weeks

Data in chart are LS mean – standard error; tenapanor (10 mg b.i.d.) data are from this study; phosphate binder data are from patients with hyperphosphatemia undergoing hemodialysis treated with lanthanum carbonate (1 g t.i.d.) or sevelamer hydrochloride (t.i.d. [2 x 2.4 g] + [1 x 1.6 g]) in a two-way crossover trial.¹

b.i.d., twice daily; LS, least-squares; t.i.d., three times daily.

1. Sprague SM et al. Clin Nephrol 2009;72:252-58.

Tenapanor has the potential to reduce the pill burden on patients with hyperphosphatemia

Calcium acetate

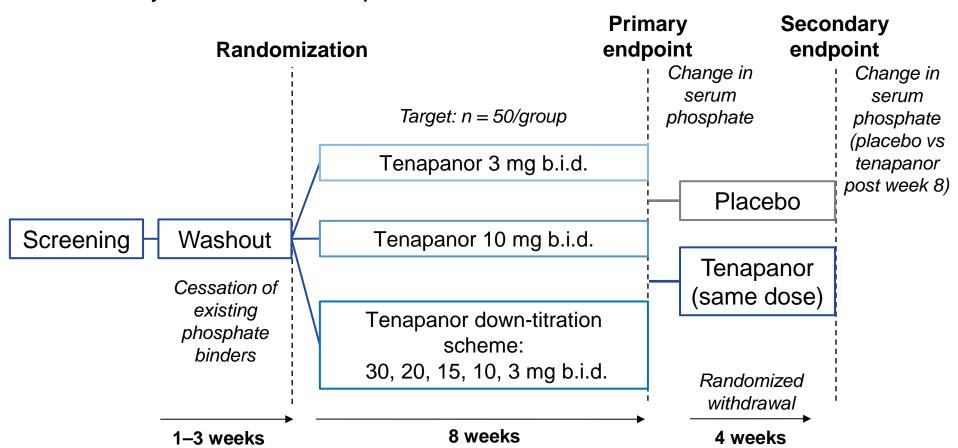
Common dose, 1–2 g with each meal

Sevelamer carbonate

Common dose, 2–2.5 g with each meal

Lanthanum carbonate

Common dose, 0.5–1.0 g with each meal


Tenapanor hydrochloride

• Milligram quantities, twice daily in one small tablet

A phase 2b, double-blind, randomizedwithdrawal, dose regimen study of tenapanor

- Patients with CKD stage 5D who are undergoing hemodialysis and have hyperphosphatemia
- Study initiation in last quarter of 2015

Acknowledgments

- The investigators acknowledge and thank the study participants, the study centers and the clinical teams
- Medical writing support was provided by Laura Schmidt (MPhil, MRes) and Steven Inglis (PhD) of Oxford PharmaGenesis, Oxford, UK, and was funded by Ardelyx Inc., Fremont, USA